

Die Immobilienwirtschaft – Spielball der Politik oder Treiber der Energiewende?

Wirtschaftliche Überlegungen zum Messstellenbetriebsgesetz und die Digitalisierung der Energiewende in der Praxis

Hamburg, 22.09.2016

Becker Büttner Held Consulting AG

Die Becker Büttner Held Consulting AG berät seit 2010 erfolgreich Energie- und Infrastrukturunternehmen in Deutschland und Europa.

Unsere Beratungsgesellschaft wächst nicht nur seit Jahren – sie wächst auch immer stärker zusammen mit unseren Partnern der Becker Büttner Held Gruppe. Denn an unseren drei Standorten Berlin, Köln und München arbeiten neben unseren BBHC-Mitarbeitern auch Rechtsanwälte, Wirtschaftsprüfer und Steuerberater. In diesem Netzwerk der kurzen Wege pflegen wir die inhaltliche und räumliche Nähe zu unseren Kunden.

- Zu unseren über 40 Mitarbeitern gehören Ingenieure, Ökonomen, Prozess- und IT-Berater sowie Wirtschaftswissenschaftler
- Standorte in Berlin, München und Köln

Rahman Fakhani

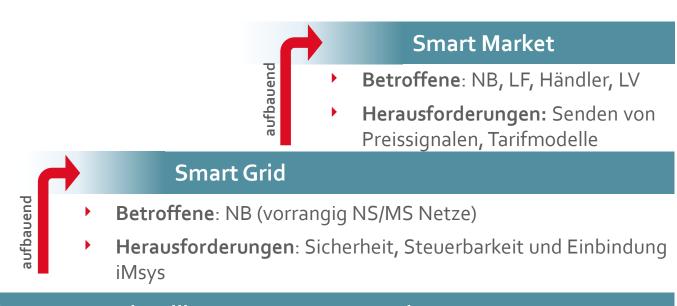
Rahman Fakhani

- ▶ Dipl.-Wirt.-Ing., MBE
- Consultant
- Berlin

BERUFSERFAHRUNG

- Business- und IT-Consulting
- Sechs Jahre Berufs-und Praxiserfahrung im IT-Bereich, der Automobilindustrie (Fokus Energie) und in der Beratung im energiewirtschaftlichen Segment
- Tätigkeiten im Bereich Anforderungsmanagement, Qualitätsund Projektmanagement sowie Controlling
- Tätigkeiten bei der SAP AG in Walldorf und der Daimler AG in Stuttgart
- Akademischer Abschluss als Master of Business Engineering (MBE) sowie als Diplom-Wirtschaftsingenieur mit Studium in USA, Japan, Südkorea, Schweden und Deutschland
- Zertifizierte Qualitätsmanagement-Fachkraft QMF-TÜV
- Six Sigma Green Belt (Lean Management Expertise)

EXPERTISE & PROJEKTE


- IT-Auswahl- und Vergabeverfahren (Anforderungsmanagement, Evaluierung, Benchmarking, Vertragsgestaltung, Verhandlung)
- Technische und wirtschaftliche Betrachtung von Smart Meter Rollout-Szenarien & Aufbau eines Smart Grid
- Projekte im Bereich Forderungsmanagement
- IT-Projekte zu WiM, GPKE/GeLi und MaBiS (SAP IDEX) sowie zu SAP EPM
- Planung & Betreuung von Software-Tests (Testmanagement SAP IS-U)
- Prozessanalyse, Strategieplanung und Marketing bei globalen Firmen in Deutschland, Schweden und Japan
- Koordination und Durchführung von Kundenworkshops (Bereich SAP IDEX-DE, IDEX-GM und SAP EPM)
- Marktanalyse & Value Engineering
- Entwicklung von nachhaltigen Energieversorgungskonzepten

Ausgangslage

Zeitschiene "Digitalisierung"

Smart Meter/intelligente Messsysteme (iMsys)

- **Betroffene**: NB (=MSB(=**GWA**)), LF und Letztverbraucher (LV)
- Herausforderungen: wirtschaftliche Abbildung, Umsetzung der Funktion Smart Meter Gateway Administration, Massen-Rollout

Geschäftsmodelle zur Digitalisierung der Energiewende

Herausforderungen im intelligenten Messwesen

Beschaffung & Disposition

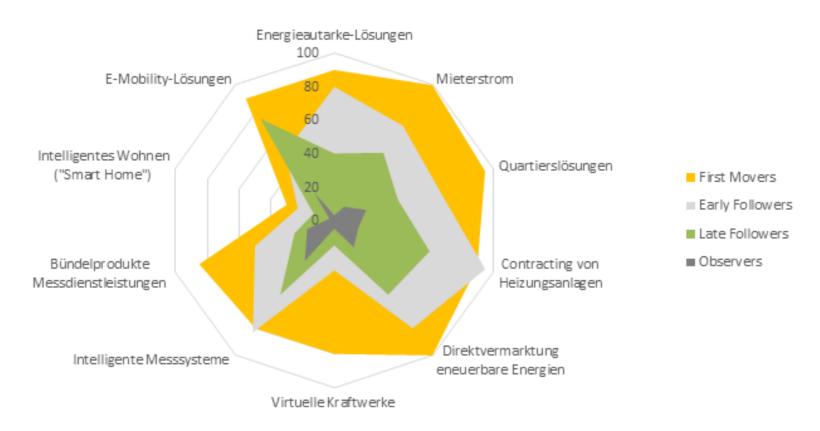
- Schulung der Monteure
- Lagerverwaltung / Logistik / Materialwirt
- Vor-Personalisieren der Gateways
- Planung der Disposition und Auftragssteuerung

Inbetriebnahme / Installation

- Einbau iMsys und mM
- Kommunikationstest
- Initiale
 Parametrierung &
 Konfiguration inkl.
 Stammdaten austausch
 Gerätedaten
- Ertüchtigung der IT-Systeme

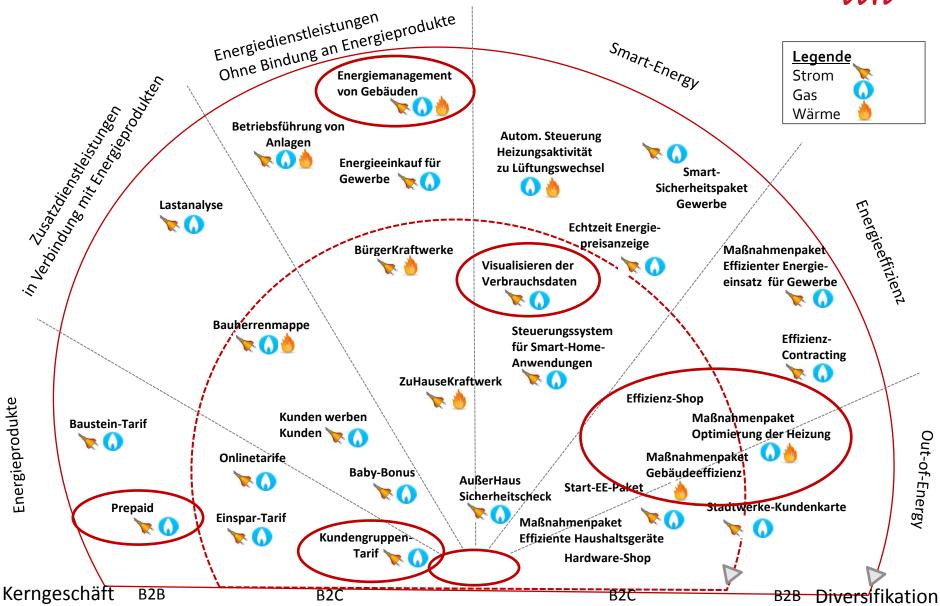
Abwicklung / Regelbetrieb

- Zertifikatemanagement
- Messwerterfassung und Messwertverarbeitung
- Bilanzierung
- Monitoring
- Störungsbehebung
- GWA-Dienste bspw. für netzdienliche Komponenten
- Marktkommunikation: Wechselprozesse nach GPKE und WiM
- Firmware-Update und Profiländerungen
- MSB Abrechnung

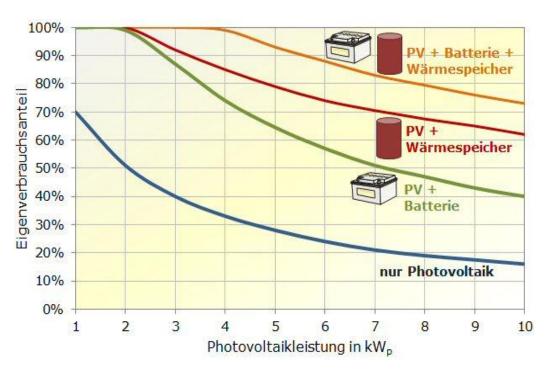

Die Wechselquote der Zählertechnik erhöht sich erheblich (Austausch Zählertechnik alle 5/8 Jahre).

Die Anzahl der fernauslesbaren Zählern wird sich vervielfachen! Bei 10.000 iMsys müssen theoretisch bis zu 350,4 Mio. Zählerstände* verarbeitet werden können.

^{*} Zählerstandsgang alle 15 Minuten, d. h. je iMsys 35.040 Zählerstandsgänge im Jahr


Angebote digitaler Geschäftsmodelle

Quelle: E&Y Studie 2016

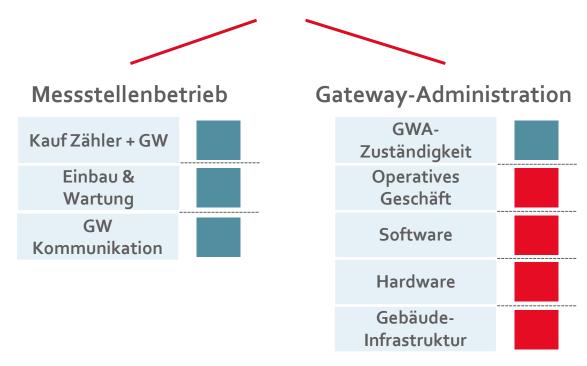

Vom Energievertrieb hin zur Energiedienstleistung

Prosumer: Eigenversorgung möglich?

Eigenverbrauchsanteile in Abhängigkeit der PV-Leistung bei einem durchschnittlichen Einfamilienhaus für verschiedene Systemvarianten bei einem spezifischen jährlichen PV-Ertrag von 958 kWh/kW.

Quelle: volker-quaschning.de

- Bei einer PV-Systemgröße von 5 kW_p beträgt der Eigenverbrauch etwa 30 %
- Zusätzliche Batterie- oder Wärmespeicher erhöhen den Eigenverbrauchsanteil je nach PV-Systemgröße um 25 bis 50 %
- Dadurch lässt sich bei kleinen PV-Systemen sogar 100% des Solarstroms zeitgleich nutzen
- Erst durch die Kombination von Batterie- und Wärmespeichern können Eigenverbrauchsanteile über 80 % auch mit größeren PV-Systemen erzielt werden
- Invest: 500€/kWh (Speicher) + 1.600kW (PV)
- typ. Amortisation bei 8 Jahren



Wirtschaftliche Überlegungen auf Grundlage der Business Case Berechnung: Messstellenbetrieb

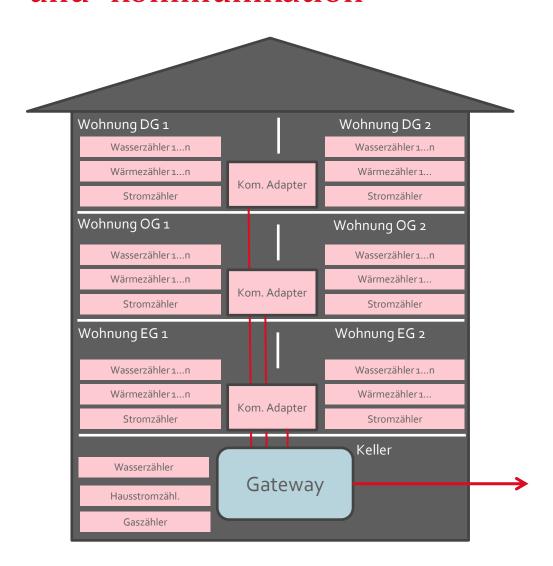
Prämissen des Business Case MSB Liegenschaftsmodell (I)

- Reine Kostenbetrachtung der neuen MSB-Aufgaben
- Neue Aufgaben des **Messstellenbetriebs 2.0**:

= buy (für GWA benötigte Komponenten werden als Dienstleistung bezogen)

Prämissen des Business Case MSB Liegenschaftsmodell (II)

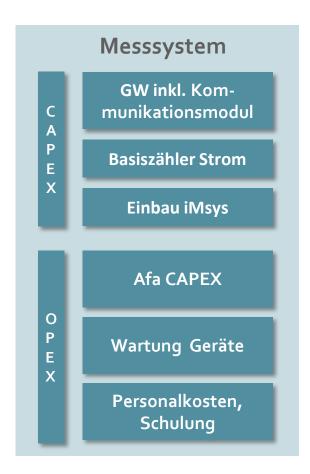
- Vereinfachung: zunächst reine Betrachtung der Sparte Strom
- Roll-Out:
 - Es erfolgen Einbauten von iMsys bzw. mM in allen Wohneinheiten einer Liegenschaft
 - Ratio Gateway zu Basiszähler: 1:10
- Betrachtungszeitraum:
 - Erlösplan geht davon aus , dass Rollout iMsys vollständig erfolgt ist
 - Kapitalkosten (CAPEX) werden auf 8 Jahre abgeschrieben
 - Liquiditätseffekte werden nicht betrachtet
- Wartungsgebühren:
 - 20 % der CAPEX bei Software
 - 2,5 % bei Hardware (z. B. Ersatzbeschaffung außerhalb der Garantie)

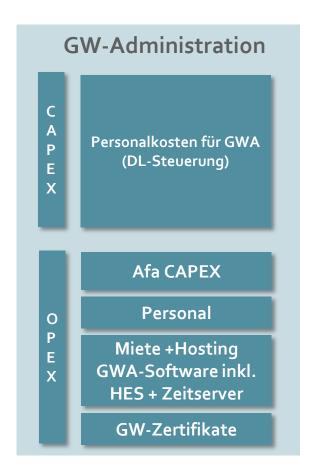


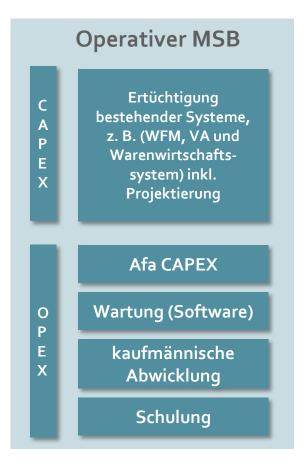
Verbrauchsgruppe: kWh/a	Ab (Zeitraum)	POG je iMsys und Jahr (brutto)	Anteil
> 100.000	2017 (16 Jahre)	angemessenes Entgelt	1%
> 50.000 ≤ 100.000	2017 (8 Jahre)	200€	3%
> 20.000 ≤ 50.000	2017 (8 Jahre)	170 €	6%
> 10.000 ≤ 20.000	2017 (8 Jahre)	130 €	7%
> 6.000 ≤ 10.000	2020	100€	11%
> 4.000 ≤ 6.000	2020	60 €	11%
> 3.000 ≤ 4.000	2020	40 €	10%
> 2.000 ≤ 3.000	2020	30 €	13%
≤ 2.000	2020	23 €	38%

- Ø-Erlös je ZP: ~ 56 € netto (66,60€ brutto)
- \triangleright Ø-Erlös je ZP hängt von **der individuellen Verbraucherstruktur des Netzes** ab

Spartenübergreifende Messwerteerfassung und -kommunikation






Geschützte Kommunikation (Zertifikate)

Kostenpositionen der iMsys-Komponenten

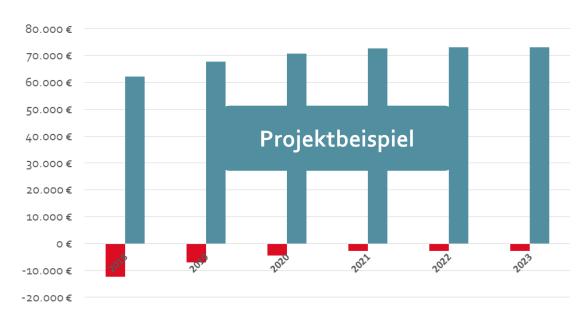
Zusammenfassung der Kosten iMsys

Jährliche Kosten iMsys gemäß BBHC-Business Case			
	ZP-abhängige Kosten	ZP-unabhängige Kosten	
Messsystem	31 €/a		
GW-Administration	26 €/a	32.000 €/ a	
Kosten des operativen Messstellenbetriebs 2.0	4 €/a	211.250 €/a	
Summe	61 €/a	243.250 €/a	

- Ø-Erlös je iMsys: ~ 56 € netto
- Negative Deckungsbeiträge unabhängig von Anzahl iMsys!

Erkenntnisse aus der BBHC-Business Case (BBHC-BC) Berechnung

- Typischen Haushaltskunden (< 3.000 kWh Verbrauch im Jahr) drücken durch die niedrige POG den Durchschnittserlös je iMsys.
- Reiner MSB Strom nicht kostendeckend, da die POG unter den Selbstkosten der Geräte plus der GWA liegen.
- Laut BBHC-BC ist ein wirtschaftlicher Betrieb nur möglich wenn:
 - mehr iMsys mit Verbräuchen im gewerblichen Bereich (∅ > 10.000 kWh) installiert werden können,
 - zusätzliche Prozesseinsparungen durch die Anbindung weiterer Medien erzielt werden,
 - 3. Zusatzdienstleistungen angeboten werden.
- Unternehmensspezifisches Verhältnis ZP/GW hat erheblichen Einfluss auf die Wirtschaftlichkeitsberechnung.


Zusatzleistung des MSB: Sub-Metering

Messwerterfassung in der Wohnungswirtschaft

- Kalt-/Warmwasserzähler
- Garten-, Abwasserzähler
- Heizkostenverteiler
- Wärmemengenzähler
- Strom-/Gaszähler

Grafische Darstellung Ergebnisse Wirtschaftlichkeit (jährliche G+V-Rechnung)

- jährliche Überschuss (ohne Mehrwertdienste)
- jährliche Überschuss (mit Mehrwertdienste)

Wirtschaftliche Überlegungen zum Mieterstrommodell

Projektbeispiel Mieterstrommodell: Berechnung Wirtschaftlichkeit

Ausgangslage

- Kerngeschäft Wärmecontracting / Energiedienstleistungen
- Deutschlandweite Präsenz
- Bisher keine Massendatenabwicklung der Stromabrechnung
- Gesamtes Immobilienpotenzial von ~13.000 Wohneinheiten

Projektergebnis

Zeitraum bis zur Aufnahme der Mieterstromlieferung :

Mieterstromquote:

Projektaufwand extern:

Jahresüberschuss (10 Jahre):

11 Monate

75%

63 TEUR

10,5 Mio. EUR

Gesamtinvestitionen* (über 10 Jahre):

Kapitalrückflüsse** (über 10 Jahre):

9,8 Mio. EUR

15,2 Mio. EUR

Rahman Fakhani

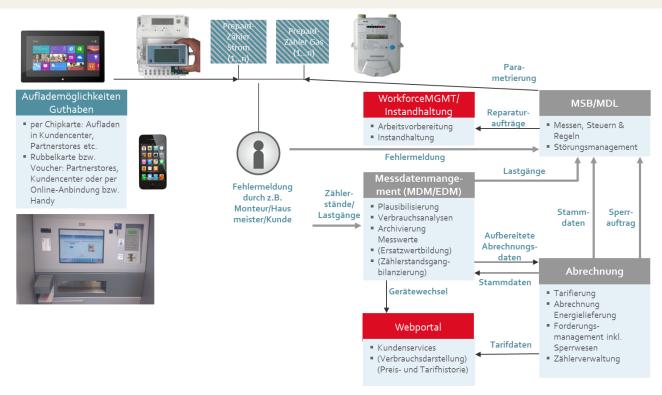
^{*}Modulkosten, Anlageninstallation, IT-Systeme, Vertrieb- / Marketing etc.

^{**} Operativer Cash-Flow

Exkurs: Wirtschaftliche Überlegungen im Bereich Forderungsmanagement

Optimierung des Forderungsmanagements: Automatisierte Vorauszahlung mit Prepaid

Vorteile durch iMsys und Einbindung in die Systemlandschaft


Eckdaten und Vorteile

Manipulationsschutz durch bidirektionale Einbindung des Vorkassensystems

Individuelle Integration in die Prozesslandschaft

Volle Verbrauchs- und Kostentransparenz

Mögliche Nutzung von Synergien im Rahmen des Rollouts intelligenter Messsysteme

Projektbeispiel: Ergebnis Business Case

Jährliche Kostenverursachung im Forderungsmanagement bei ca. o,5% der Kunden ("Schlechtzahler", ca. 800 Kunden)*:

ca. 750 €

Jährliche Kosten für Vorkassensystem inkl. Inbetriebnahme und Betrieb**:

ca. 150 €

Effektiver Jahresüberschuss:

ca. 600 €

Durchschnittliche effektive Gesamtkosten je Kunde** (über 5 Jahre):

750 €

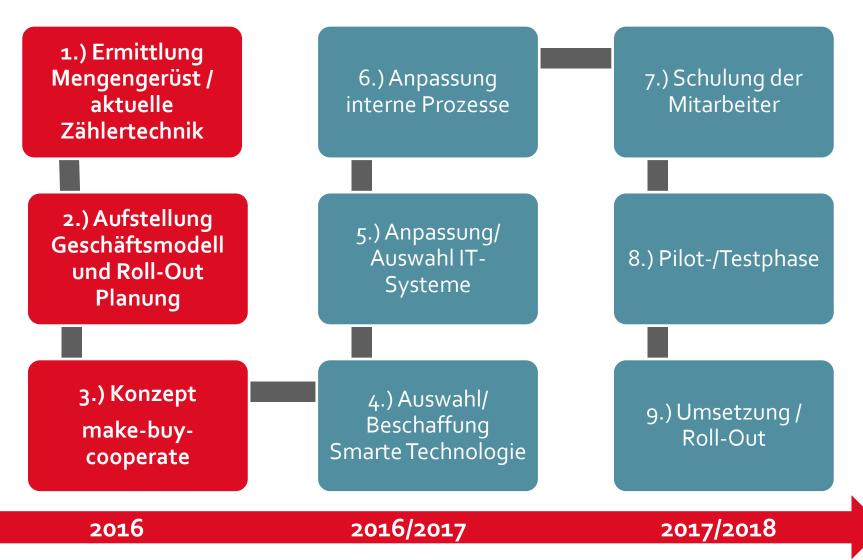
Durchschn. Gesamteinsparpotential für den Grundversorger (über 5 J.):

3.000€

Gesamteinsparung bezogen auf die betrachtete Kundengruppe (über 5 Jahre)

2,4 Mio. €

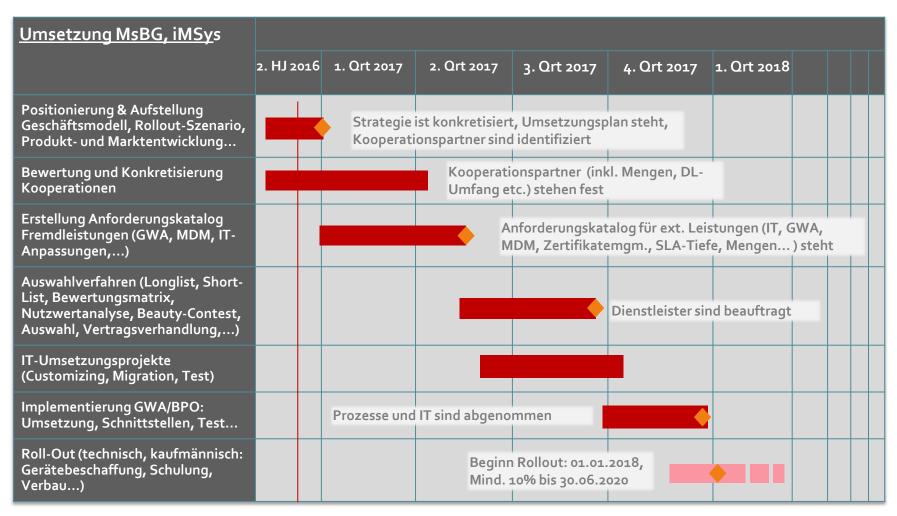
Ersparnisse übersteigen effektive Kosten, dabei können zudem die Kosten ganz oder teilweise an den Kunden weitergereicht werden (z. B. eingepreist in Tarif)


^{*}z. B. Prozesskosten, Forderungsausfall etc. ** Kosten für iMsys sowie Abschaltrelais, Nutzung der IT-Architektur für den iMsys, Betreuung etc., abzgl. Entgelt von 19,33 € (nett) für die POG im Bereich V < 2.000 kWh

Ausblick

Konkretisierung der Anforderungen: Erste Schritte

Wie verändert das MsbG den Status Quo?


- Neue Messtechnik
- Neue IKT-Architekturen
- Neue Kommunikationsformen und –wege
- Neue Geschäftsabläufe
- Neue Zuständigkeiten und neue Organisationsstrukturen

Disruptive Veränderungen:

- ▶ Die Digitalisierung erreicht zunehmend die Immobilienwirtschaft
 → Neue Geschäftsmodelle
- Rechtzeitige strategische Positionierung und Auswahl Kooperationspartner notwendig

Projektplan - Beispiel

Vielen Dank für Ihre Aufmerksamkeit.

Rahman Fakhani, BBHC Berlin

Tel +49 (0)30 611 28 40 - 775 rahman.fakhani@bbh-beratung.de www.bbh-beratung.de